111_016 Mini-https https://imimsociety.net https://imimschool.net The results of mid-term-exam are entered AIS. Course works list: https://docs.google.com/document/d/11Bwk8HXLvjvzAEImcRiFcacwnrrz0lBs/edit?usp=sharing&ouid= 111502255533491874828&rtpof=true&sd=true Mini-https: https://imimsociety.net/en/14-cryptography To provide information exchange Confidentiality, Integrity and Authenticity even using open communication channels. Public Parameters $\mathbf{PP} = (\mathbf{p}, \mathbf{g})$. p= 268435019; g=2; MINI-HTTPS €5.00 >> p= int64(268435019); >> g=2; fland shaking Pulca $PrK_B = y = randi(p-1)$ $PuK_B = B = q^y \mod p$ AKAP, (E,D), (Sign, Ver) AKAP $PuK_A = a$ $PrK_A = x = randi(p-1)$ $PuK_A = a = q^x \mod p$ $G, G = (r_{9}s)$ k $h_{c} = H(C_{l} | w)$ 1. Ver (Puka=a, 5, ha)= 17, 5} $E(\mathbf{k}, \mathcal{T}_{\mathbf{X}}) = G$ Eucrypt & sign paradigm 2. $D(k, c) = T_x$ Chosenc Ciphertex Attack 3. Performes money transf. CCA Alice By realizing Schnorr - Sign Hello Sign Bob i ~ randí (p-1) Alice's private key r = gi mool p Bob_{BE459576} r 785039E8 s $h_{d} = H(C||r)$ Bob $PuK_A = a$ Sign ($Prk = x, h_{c}$) = G = (r, s)Hello Verify Bob Alice's $S = (i + X \cdot h_c) mod(p - 1)$ public key

https://imimschool.net
https://imimschool.net/en/home/50-mini-https.html
Go back
Mini-https
All problems must be bought sequentially only one problem at time. It is strongly recommended that you use Octave
software implemented in your local computer. The Octave installation version compatible with our .m files can be downloaded from: http://crypto.fmf.ktu.lt/xdownload/
This protocol is executed between Student Alice (you) and Mentor Bob. Both parties want to create secure channel
where all messages exchanged by Alice and Bob will be encrypted using AES128() symmetric encryption function. To
do that parties are realizing Authenticated Key Agreement Protocol (AKAP) based on Schnorr signature. Then the
messages exchanged by Alice and Bob are encrypted using AES128() with agreed symmetric secret session key.
In this realization, encryption is performed for 1 block plain text to be short and to simplify computations. The length
of this block consist of 128 bits which corresponds to 16 characters encoded in ASCII format (8 bits for 1 character).
All plaintext messages to be encrypted are assigned to the string type variables, e.g. $>> m=m=$ 'Hello Bob'; thus after
encryption, obtained ciphertext CC is represented in two ways:
1) by ASCII encoded string type variable consisting of 16 characters (16x8=128 bits), and
2) by hexadecimally encoded string consisting of 32 digits (4 bits for 1 digit: 4x32=128 bits).
Parameter values sent by Alice must be included in input field separated by commas. In this instruction only input
field is denoted by brackets []. E.g., if Alice under the Mentor's request computed public parameters p=201623207
and $g=22$, then symbolically in the input field she must enter $[p,g]$ which corresponds to enter 201623207, 22 in the
input field sent by Mentor without any brackets.
Mentor's public key is B.
The following functions are used in the protocol:
• >> $int64(randi(rng))$
% Returns random integer i of 64 bits length in range $0 < i < rng$.
• >> $mod_exp(g,x,p)$
% Returns $a=g^x \mod p$, check that $1 < x < p-1$, and $1 < g < p-1$. • >> $hd_{28}(strg)$
% Returns 28-bits decimal h-value when input is symbolic variable <i>strg</i> .
%Variable <i>strg</i> can be fomed by <i>concat</i> function;
• >> $C = AES128(m, Kh, NR, e')$
% $AES128$ encryption function returning ciphertext C encoded ASCII and
hexadecimal formats;
%Encryption is performed for 1 plaintext block of 128 bits length corresponding to 16
ASCII symbols; % m - message of string type to be encrypted, e.g. >> $m =' HelloBob'$;
% K_h - secret symmetric key represented in hexadecimal digits % NR - number of
rounds used in $AES128$;
%'e' - string type variable calling encryption function;
$\bullet >> m = AES128(C, key, Nr, 'd')$
% $AES128$ decryption function returning decrypted message D of string type;
% $'d'$ - string type variable calling decryption function;

1. Mentor sends you Public Parameters $(p=268435019; g=2)$ of 28	>> p=int64(268435019)	>> x=int64(randi(p-1))
bits length. Generate public and private keys $PrK_A = x$ and $-$	p = 268435019	x = 96302305
$PuK_A = a.$	>> g=2	>> a=mod_exp(g,x,p)
Send public key [a] to the Mentor.	g = 2	a = 149403
	g - 2	a - 149405
149403		
2. Compute random secret number u of 28 bit length and compute	>> u=int64(randi(p-1))	i = 219891350
session public parameter t_A . Sign t_A with Schnorr signature scheme	u = 130744496	<pre>>> r=mod_exp(g,i,p)</pre>
by computing two signature components $\sigma = (r, s)$. Send $[t_A, r, s]$ to	>> tA=mod_exp(g,u,p)	r = 139674
the Mentor.	tA = 8797451	
the Mentor.		>> cc=concat(tA,r)
8797451, 139674, 79705190	>> i=int64(randi(p-1))	cc = 8797451139674
		>> h=hd28(cc)
		h = 227536464
		>> s=mod(i+x*h,p-1)
· · · · · · · · · · · · · · · · · · ·		s = 79705190
B tB		
3. Mentor sends you $(t_B = 32768, K_B = 240219802, R = 124553424,$	>> B=int64(32768)	>> g_S=mod_exp(g,S,p)
$S=$ 173651013). Verify Mentor's signature $\sigma_M=(R,S)$ on t_B . If	B = 32768	g_S = 208873585
signatur is valid then taking S compute verification parameter $V_1=g^S$	>> tB=int64(240219802)	V1 =g_S;
mod p. Compute common symmetric secret key k and transform k to	tB = 240219802	>> Con=concat(tB,R)
the hexadecimal form k_h of 32 digits length as it is required for AES128	>> R=int64(124553424)	Con = 240219802124553424
function. Create the string of message variable $m =$ 'MMDD' consisting	R = 124553424	>> H=hd28(Con)
of the month and day of your birth. Encrypt message m using 1 round		H = 250537502
of AES128 cipher with key k_h by computing ciphertext	>> S=int64(173651013)	>> B_H=mod_exp(B,H,p)
>> C=AES128(m,Kh,1,'e'). Attention! Encryption using 1 round is	S = 173651013	
extremely insecure and is used there to speed up the computations and to make sure of its insecurity. Insecurity is seen by comparing		B_H = 109471541
plaintext and ciphertext messages in hexadecimal format. They have		>> RB_H=mod(R*B_H,p)
non-excrypted digits. C should be entered within ".		RB_H = 208873585
Send $[V_1, C]$ to the Mentor for decryption.		V2 =RB_H;
208873585, '78bea39a78be59c878e5a3c8a7fd6ad7'		Verification:
		$g^S \mod p = RB^H \mod p$.
>> m='0501'		V1 = V2
m = 0501		$\mathbf{v} \mathbf{I} = \mathbf{v} \mathbf{Z}$
>> k=mod_exp(tB,u,p)		
k = 239323423		
>> kh=dec2hex(k,32)		
kh = 00000000000000000000000000000000000		
>> C=AES128(m,kh,1,'e')		
new = xxYxaj		
C = 78bea39a78be59c878e5a3c8a7fd6ad7		
c = /bbcassa/bbcssco/bcsascoa/lubau/		

4. Ok, let be informed that Mentor gets you a price for your birthday. The sum of the price he is sending to you as a ciphertex $(C_M = '78bea3da78be81c878c7a3c8befd6ad7')$. Please decrypt and check it and then encrypt it again with added string 'ok' right after the sum by computing ciphertext C_1 . Send $[C_1]$ to the Mentor. C_1 should be entered within ". '78bea33978bee4c8788ca3c860fd6ad7' Check Results Get reward	<pre>>> M=AES128(CM,kh,1,'d') Out = 00000000000000000000000000000000000</pre>
Let the number of rounds is equal	to NR =15,
>> m = '0501'	
m = 0501	
>> M_ok='64ok'	
M_ok = 64ok	
>> NR=10	
NR = 10	
>> C15=AES128(m,kh,NR,'e')	
new = \DX-e C	
C15 = 5c448d582d6520850001fb439eaa9bc6	
>> C15C1=AES128(M_ok,kh,NR,'e')	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(M_ok,kh,NR,'e')	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	
>> C15C1=AES128(<mark>M_ok</mark> ,kh,NR,'e') new = ӜvY(ن	